
Stack Shape Analysis to Detect Obfuscated calls in Binaries

Arun Lakhotia and Uday Eric
Center for Advanced Computer Studies, University of Louisiana at Lafayette, LA

arun, euk4141@cacs.louisiana.edu

Abstract

Information about calls to the operating system (or

kernel libraries) made by a binary executable maybe
used to determine whether the binary is malicious.
Being aware of this approach, malicious programmers
hide this information by making such calls without
using the CALL instruction. For instance, the CALL
ADDR instruction may be replaced by two PUSH
instructions and a RETURN instruction, the first
PUSH pushes the address of instruction after the
RETURN instruction, and the second PUSH pushes the
address ADDR. The code may be further obfuscated by
spreading the three instructions and by splitting each
instruction into multiple instructions. This paper
presents a method to statically detect obfuscated calls
in binary code. The notion of abstract stack is
introduced to associate each element in the stack to the
instruction that pushes the element. An abstract stack
graph is a concise representation of all abstract stacks
at every point in the program. The abstract stack
graph may be created by abstract interpretation of the
binary executable and may be used to detect
obfuscated calls.

1. Introduction

Programmers obfuscate their code with the intent of
making it difficult to discern information from the
code. Programs may be obfuscated to protect
intellectual property and to increase security of code
(by making it difficult for others to identify
vulnerabilities) [6, 8, 9, 12, 18]. Programs may also be
obfuscated to hide malicious behavior and to evade
detection by anti-virus scanners [4, 13, 17].

There now exist malicious programs—virus,
worms, Trojans, spyware, backdoors, etc.—that are
self-obfuscating. These programs, termed as
metamorphic by the anti-virus community, obfuscated
themselves before propagating to the next host [10].
Repeated obfuscation ensures that two copies of a

virus, henceforth used to refer to a malicious program,
are different and successive generations are
significantly harder to reverse engineer.

Christodrescu et al. [4] present malicious code
detection as being an obfuscation-deobfuscation game
between the virus writers and researchers working on
malicious code detection. The obfuscations are such
that there is considerable change in the byte sequence
of the executable obtained but do not change the actual
sequence of instructions being executed. The aim of
the virus writer is to fool the antivirus tool into
believing that it is dealing with a safe executable.

To achieve its malicious intent, a virus must access
system resources, such as, the file system and network.
Based on analysis of thousands of viruses anti-virus
companies have developed knowledge-bases of
combinations of system calls that may be considered
malicious. Some anti-virus scanners look for bit
patterns associated with system calls to identify
malicious programs. Such scanners are easily thwarted
by metamorphic viruses or viruses that simply
obfuscate system calls [15, 16]. For instance, the call
addr instruction may be replaced by two push
instructions and a ret instruction, the first push pushing
the address of instruction after the ret instruction, the
second push pushing the address addr. The code may
be further obfuscated by spreading the three
instructions and by further splitting each instruction
into multiple instructions.

To detect obfuscated viruses some anti-virus
scanners execute a virus in an emulated environment
and trap the calls to the operating system. Such
dynamic analyzers must use some heuristic to
determine when to stop analyzing a program, for its
possible that a program may terminate on user
command. These analyzers are fooled by viruses by
introducing some delay, i.e., code that wastes time.

This paper presents a method to statically detect
obfuscated calls when the obfuscation is performed by
using other stack(-related) instructions, such as push
and pop, ret, or instructions that can statically be
mapped to such stack operations. The method uses

abstract interpretation wherein the stack instructions
are interpreted to operate on an abstract stack. Instead
of keeping actual data elements, an abstract stack
keeps the address of the instruction that pushes an
element on the stack. The infinite set of abstract stacks
resulting from all possible executions of a program, a
la, static analysis, is concisely represented in an
abstract stack graph.

As it is with any anti-virus solution, our method
may be used to increase the level of difficulty for
writing a virus. Our method can help by removing
some common obfuscation from the toolkit of a virus
writer. However, we do not claim to that the method
can deobfuscate all stack related obfuscations. Indeed,
writing a program that detects all obfuscations is not
achievable for the general problem maps to detecting
program equivalence, which is undecidable.

Section 2 presents related work in this area and
describes how metamorphic viruses use system calls to
library functions to infect, conceal and propagate.
Section 3 presents the notion of an abstract stack and
the abstract stack graph. Section 4 presents our
algorithm to construct the abstract stack graph. The
section also includes an example to enumerate the
algorithm. Section 5 describes how the abstract stack
graph may be used to detect various obfuscations.
Section 6 concludes this paper.

2. Related work

The analysis of the bit stream of a binary
executable does not offer significant information. To
get any meaningful information it must at least be
disassembled, i.e., translated to assembly instructions.
Most often the disassembled code may be analyzed
further, following steps similar to those performed for
decompilation [5]. Lakhotia and Singh [11] show how
a virus writer could attack the various stages in the
decompilation of binaries by taking advantage of the
limitation of static analysis. Indeed, Linn et al. [12]
present code obfuscation techniques for disrupting the
disassembly phase, making it difficult for static
analysis to even get started.

The art of obfuscation is very advanced. Collberg et
al. [7] presents taxonomy of obfuscating
transformations where a detailed theoretical
description of various possible obfuscating
transformations is presented. There exist obfuscation
engines that may be linked to a program to create a
self-obfuscating program. Two of them are Mistfall
(by z0mbie), which is a library for binary obfuscation
[2], and Burneye (by TESO), which is a Linux binary
encapsulation tool [1].

The antivirus techniques usually applied to detect
metamorphic viruses are heuristics and emulation
coupled with static or dynamic analysis of the code
[14]. Christodrescu et al. [4] show that current anti-
virus scanners can be subverted by very simple
obfuscating transformations [4].

Many recent viruses heavily depend on calls to
system libraries. The Win95/Kala.7620 was one of the
first viruses to use an API to transfer control to the
virus code (in this case, its decryptor) [16]. Modern
anti-virus tools are to have API emulation to detect
these. To make these system calls, a popular technique
adopted by most virus writers (as observed in recent
binary viruses when disassembled and analyzed),
targeting the Windows operating system is to locate
the internal KERNEL32.DLL entry point and call
KERNEL32 functions by ordinal. This is done by
locating KERNEL32.DLL’s PE header in memory and
using the header info to locate KERNEL32’s export
section.

A set of suspicious API strings will appear in non-
encrypted Win32 viruses. This can make the
disassembly of the virus much easier and potentially
useful for heuristic scanning. An effective anti-
heuristic/anti-disassembly trick appearing in various
modern viruses is to hide the use of API strings to
access particular APIs from the Win32 set. For
example, the Win32/Dengue virus does not use API
strings to access particular APIs [16]. Some recent
viruses use a checksum list of the actual strings. The
checksums are recalculated via the export address table
of KERNEL32.DLL and the address of the API is
found. Hence, the absence of API name strings should
not be inferred as non-existence of any API calls in the
program.

There is hope, however. A recent result by Barak et
al. [3] proves that in general, perfect program
obfuscation is impossible, i.e., for any obfuscator one
can write a deobfuscator. This is likely to have an
effect on the pace at which new metamorphic
transformations are introduced. Lakhotia and Singh
[11] observe that though metamorphic viruses pose a
serious challenge to anti-virus technologies, the virus
writers too are confronted with the same theoretical
limits and have to address some the same challenges
that the anti-virus technologies face.

Christodrescu and Jha use abstract patterns to
detect malicious patterns in executables [4].
Mohammed has developed a technique to undo certain
obfuscation transformations, such as statement
reordering, variable renaming, and expression
reshaping, with the [13].

3. Abstract stack and abstract stack
graph

We propose the notion of an abstract stack that
captures the stack activity and simplifies analysis of
control flow but is quite different from the actual
stack. The actual stack for a program code keeps track
of the values being pushed and popped in a LIFO (Last
In First Out) sequence. The abstract stack on the other
hand keeps track of the addresses of the instructions
causing the push and pop of values in a LIFO
sequence. For example, consider Figure 1. Each of the
instructions in the sample program is marked with its
address from L1 through L4. The actual stack and the
abstract stack, after execution of the instruction at
address L4, are as shown in Figure 1. Initially the
addresses L1 and L2 would have been pushed onto the
abstract stack, but due to the pop instruction at L3, the
address L2 is popped and next L4 is pushed onto the
abstract stack.

Sample Program Actual Stack Abstract Stack
L1: push eax
L2: push ebx
L3: pop esi
L4: push edx

Figure 1.

An example computing the abstract stack at each
program point is shown in Figure 2. Figure 2a is a
sample code for which the control flow graph is as
shown in figure 2b. Each block in the control flow
graph represents a program point. The blocks are
numbered in reverse post order and the edges of the
graph are tagged as either being a tree edge, a forward
edge, a cross edge or a back edge. Figure 2c shows few
of the abstract stacks that are possible at some of the
program points. These are not all of the abstract stacks
but numerous more are possible at each program point.
For instance the 3rd abstract stack at program point 2 is
the result of traversing the control flow graph through
the program points 1 2 3 4 3 4 5
2 in that order. The abstract stack at program point 4 is
the result of traversing the program points 1 2 3

 4 3 4 5 2 3 4 in that order while
the abstract stack at program point 8 is the result of
traversing the program points 1 2 3 4 5
2 3 4 3 5 2 7 8.

As can be seen in Figure 2c, at each program point,
there can be numerous possible abstract stack states.
This might result in having to keep track of

exponential number of abstract stacks. A more
efficient way would be to have an abstract stack graph.
An abstract stack graph is a directed graph
representing the union of all the abstract stacks at each
program point. A backward path in the graph ending at
a particular node represents an abstract stack at that
program point. Figure 2d shows the abstract stack
graph for the control flow graph (Figure 2b). An
algorithm to construct the abstract stack graph from the
control flow graph is described in the next section.

4. Algorithm to construct the abstract
stack graph

In this section we explain the algorithm in plain
English. The algorithm assumes that an approximate
control flow graph is available.

The algorithm to construct an abstract stack graph
consists of the following seven steps:

Step 1: For each block of the control flow graph,
replace sequences of instructions that are equivalent
push or pop instructions. These instructions modify the
stack pointer. For instance, the sequence of
instructions:
dec esp
dec esp
mov [esp], eax
are replaced with push eax while the sequence of
instructions:
mov eax, [esp]
inc esp
inc esp
are replaced with pop eax.

Step 2: For each block of the control flow graph,
check to see if there is more than one stack operation
(push, pop, call, ret). If such a block is found, break it
into appropriate number of fall-through blocks such
that each block now formed has exactly one stack
operation. Each block in the new control flow graph
thus formed represents either a push block, a pop
block, a call block, a ret block, or a block with no stack
operation.

Step 3: Tag each edge of the control flow graph as
tree-edge, forward-edge, side-edge or back-edge.

Step 4: Process each block by traversing the control
flow graph in reverse post order.

Step 5: For each block type B do the following:
5(a) If the block B is of type push block or call

block, then create a node in the abstract stack graph,
with the address of the instruction causing the push (or
call) and tag its number to it. If this block B has an
incoming tree-edge in the CFG from another block B1,

eax

edx

…

L1

L4

…

then create an edge from B to B1 in the abstract stack
graph (where B1 is also a node in the abstract stack
graph). Do the same if there are more incoming tree
edges to B.

5(b) If the block B is of type pop block or ret block,
then for each block B1 that has a tree-edge pointing to
B in the CFG is processed. The block to which such B1
are pointing to in the as of yet formed stack graph are
marked with the tag number of B.

5(c) If the block B has no stack operations, then for
each block B1 that has a tree-edge pointing to B in the
CFG is processed. The blocks where the tag numbers
of such blocks B1 are present in the as of yet formed
stack graph are marked with the tag number of B.

Step 6: Each of the blocks with incoming forward-
edges, side-edges and back-edges in the CFG are
processed in this order. These blocks are processed
according to their block types applying the rules as in
step 5.

Step 7: If an update takes place in the abstract stack
graph, steps 1 through 6 are repeated until there is no
more change in the abstract stack graph.

Let us see the algorithm in working on the example
control flow graph in Figure 2(b). Let us assume the
control flow graph to be in required form with push,
pop and call blocks and ignore, for the time being, the
instructions that might form a no-stack-operation
block. First, block E is formed in the abstract stack
graph and tagged with 1. The next block is retrieved,
which is a push block. Hence the block B0 is formed in
the abstract stack graph and since it has an incoming
tree edge from E in the CFG, an edge is created from
B0 toward E. Similarly the push blocks B1 and B3 are
included in the abstract stack graph. The next block 5
is a pop block and has an incoming tree edge from
block 4. Blocks to which 4 has an edge toward in the
as of yet formed abstract stack graph are tagged with 5
now. Hence, 5 is tagged onto the block B1 in the
abstract stack graph. Similarly, B6 is formed with an
edge toward B1 and 7 is tagged with E because 2 is
pointing toward E. Then block B4 is formed is tagged
with 8 and is pointing toward E because 7 is tagged
over there. Next we consider the forward, cross and
back edges. The forward edge results in an edge from
B1 pointing toward B3. The cross edge results in 5
being tagged to E. The back edge results in an edge
from B0 pointing toward wherever 5 is tagged and that
is B1. The algorithm is repeated for a new iteration
because new information has been added to the
abstract stack graph. Results in an edge from B6
pointing toward E because 5 is tagged over there. 7 is
tagged with B1 because B0 is now pointing toward B1.
And now an edge is created from B4 to B1 because 7

is tagged to B1. The next iteration generates no new
changes and so the abstract stack graph is now stable

The algorithm is robust enough to cope with the
occurrences of unbalanced push or pop in loops. This
means that if there are individual loops within which
push or pop occur, and within these loops the push or
pop are not balanced (i.e., there are more push than
pop, or more pop than push), the algorithm can still
produce a correct abstract stack graph that
encompasses all the possible abstract stacks at each
program point. The following section discusses various
ways in which call obfucations are possible and the
use of the abstract stack graph in detecting them.

5. Detecting obfuscated calls

A call to a procedure within the same segment is
near and performs the following: it decrements the
stack pointer (esp) by a word and pushes the
instruction pointer (eip, containing the offset of the
instruction following the call) onto the stack. Next it
inserts the offset address of the called procedure into
eip. This is shown in figure 3(a). A ret that returns
from a near procedure basically reverses the call’s
steps. It pops the old eip value from the stack into eip
and increments esp by a word. This is shown in figure
5(a).

The goal of the obfuscator remains to obfuscate the
call instruction in such a way so that the antivirus
software is unable to detect that a system call is indeed
being made. The obfuscation is not just limited to the
call being made, but in most cases is also extended to
the parameters being passed to the call and also to the
ret statement.

Figure 3 shows some of the ways of obfuscating the
call instruction. E, L0, L1, etc., at the left of each
instruction represent the address of the instruction and
the numbers following the “ ” on the right of each
instruction represent the flow of control. In figure 3(b)
we see how a combination of push/jmp can be used to
mimic the call. The 1st instruction pushes the entry
point of the code onto the stack. The 2nd instruction
pushes the offset address of the instruction following
the call, which is the return address, onto the stack.
The 3rd instruction loads the effective address of the
instruction “fun” into the register eax and the 4th
instruction does a jump through register to this
address. When the function “fun” eventually does a
ret, the control returns to the return address previously
pushed onto the stack. Hence, without using a call, the
same functionality is achieved here as is intended in
3(a). The abstract stack graph shown for the sample
code in figure 3(b) can be used to detect this

T

T T

T

T

T

T

X

B

F

Sample Program

E: //entry point
B0: push eax
C1: sub ecx, 1h
C2: beqz B2
B1: push ebx
B3: push ecx
C4: dec ecx
C5: beqz B1
C6: jmp B5
B2: pop eip
B4: push esi
B5: pop eip
C6: beq B0
B6: call abc

Figure 2a.

Figure 2.

E: // entry

B1: push ebx B2: pop eip

B6: call abc

B3: push ecx
C4: dec ecx
C5: beqz B1
C6: jmp B5

B0: push eax
C1: sub ecx, 1h
C2: beqz B2

1

4

3 7

6

2

B5: pop eip
C6: beq B0 5

Figure 2b.

B4: push esi 8

B1

B6 B4

B0

E

2

1

8 6

Figure 2d.

5
7

5

7

3
4B3

B0

E

6

Stack Growth

Figure 2c.

E

B0

B1

B0

E

B0

B1

B3

B1

B0

2 4

8

B6

E E

B0

B1

B6

E

B0

B1

B3

B1

B6

E

B0

B1

B0

B1

B3

B1

B4

E

B0

B1

B3

B1

B0

B1

B3

1

2

3

1

2

3

obfuscation. At instruction 6, we can trace back in the
abstract stack graph to the instruction that pushed the
return address onto the stack, which is instruction 2
By looking at the semantics of the instructions
following it we now know that a “call” is being made.

Figure 3(c) shows a combination of push/ret or
push/pop that can be used to obfuscate a call. At
instruction 5, where a ret or a pop eip is done, the
address that was previously pushed onto the stack by
instruction 4 is now in eip transferring control to
“fun”. The abstract stack graph shown here can be
used to dtect this obfuscation. At instruction 5, tracing
back in the graph to the instruction that pushed the
“popped” address brings us to L2, which is the 4th
instruction. By looking into eax we now know that
“fun” was being called.

Win32.Evol uses a combination of push/pop to
make an obfuscated call to a system library function
(LoadLibraryA in this case). It first moves the function
name into a register (eax) and then pushes this onto the
stack and later pops it to transfer control to the
function. Sample code from the virus is as follows:

lea eax, [ebp+var_14]
mov dword ptr [eax], ‘daoL’
mov dword ptr [eax+4], ‘rbiL’
mov dword ptr [eax+8], ‘Ayra’
mov byte ptr [eax+0Ch], 0
push eax
….
pop ebp

5.1. Detecting obfuscations to parameters

being passed to a call

Parameters to a function in assembly are passed by
pushing them onto the stack before a call to the
function is made. The code in the called function later
retrieves these parameters from the stack. Figure 4
shows possible ways of obfuscating parameters to
calls. 4(b) shows the use of out of turn pushes to
distort the actual function to which the parameters are
being passed. The first call occurring after the pushes
need not be the function to which the parameters are

3(a) 3(b) 3(c)

Figure 3. Possible ways of obfuscating a call instruction

E: push E ;entry
L0: call fun
L1: …
…
L15: ;fun here

Normal call

E: push E ;entry 1
L0: push L3 2
L1: lea eax, fun 3
L2: jmp eax 4
L3: …
L15: ;fun here 5
L16: ret 6

Using
push/jmp E: push E ;entry 1

L0: push L4 2
L1: lea eax, fun 3
L2: push eax 4
L3: ret 5
L4: …
L15: ;fun here 6

Using push/ret

E: push E ;entry 1
L0: push L4 2
L1: lea eax, fun 3
L2: push eax 4
L3: pop eip 5
L4: …
L15: ;fun here 6

Using push/pop

Actual Stack Actual Stack

eip = L15 eip = L15 eip = L15 eip = L15

Actual Stack Actual Stack

4

E

L0

L2

1

2 53

Abstract Stack Graph

esp
E

L0 esp

E

L3 esp

E

L4 esp
E

L4

1 E

L0 2

4

3

Abstract Stack Graph

6

actually being passed. Instructions 2 and 3 push the
parameters in registers eax and ebx onto the stack. The
4th instruction calls “fun1” that simply returns
(instruction 5) without actually retrieving any of the
parameters. The 6th instruction calls “fun” that actually
uses these parameters. The abstract stack graph shown
here can be used to detect this obfuscation. At program
point 6 in the abstract stack graph, which is a call to
“fun”, the state of the abstract stack is E, L0, L1, L3.
Hence the parameters being pushed at L0 and L1
pertain to the call to “fun”. Though the same abstract

stack state holds at program point 4, which is a call to
“fun1”, it is ruled out that the pushes at L0 and L1
pertain to “fun1”. This is because the ret at program
point 5 is associated with the call to “fun1”. This too is
deduced form the abstract stack graph itself by
checking the address of the instruction that popped the
top of the abstract stack. Since this is a call to “fun1”,
we have matched the call/ret. This shows that the
abstract stack graph can also be used to match blocks
of call/ret.

E: push E ;entry
L0: push eax
L1: push ebx
L2: call fun
L3: …
…
L15: ;fun here

Normal passing

E: push E ;entry 1
L0: push eax 2
L1: push edx 3
L2: pop eax 4
L3: push ebx 5
L4: call fun 6
L5: …
L15: ;fun here

Redundant push/pop

E: push E ;entry 1
L0: push eax 2
L1: push ebx 3
L2: call fun1 4
L3: call fun 6
L4: ;fun1 here
L4: ret 5
L5: ;fun here

Out of turn push

E: push ;entry 1
L0: xor edx, edx 2
L1: bneqz L6 3
L2: …
L6: push eax 4
L7: push ebx 5
L8: call fun 6
L15: ;fun here

Redundant control

4(a) 4(b) 4(c) 4(d)

Figure 4. Possible ways of obfuscating parameters to calls

eip = L15

Actual Stack

eip = L5

Actual Stack

eip = L15

Actual Stack

eip = L15

Actual Stack

6

E

L0

L1

1

2

4

53

L2
L3

Abstract Stack Graph

esp

E

eax

ebx

L2 esp

E

eax

ebx

L3 esp

E

eax

ebx

L5

esp

E

eax

ebx

L3

L5

4

E

L0

L1

1

2

6

3

L4

L3

5

Abstract Stack Graph Abstract Stack Graph

E

L2

L3

1 3

5

6

4

L4

2

When we get to a call, we know the instructions
that have pushed elements on the stack. If a call takes
two instructions, the top two pushes on the stack will
be the parameters. The ith parameter corresponds to the
ith element on the stack (starting from the top). This is
assuming the first parameter is pushed last. If the last
parameter is pushed first, we change it around.

Figure 4(c) shows the use of redundant push/pop to
obfuscate parameters to a call. Instructions 3 and 4 are
redundant. At program point 6 in the abstract stack
graph (in figure 4(c)), the abstract stack state shows
address L0 and L3 as being on the stack, which are the
instructions that push the parameters for “fun”, hence
eliminating any redundant push/pops.

Figure 4(d) shows the use of redundant control to
obfuscate parameters to a call. This is done by
exploiting the assumption that a conditional branch has
two possible targets. The conditional branch may be
instrumented, at runtime, to always go in one direction
– i.e., either it is always taken and never falls through,

or it is never taken and always falls through [18]. This
technique relies on using predicates that always
evaluate to either the constant true or the constant
false, regardless of the values of their inputs: such
predicates are known as opaque predicates. The 2nd
instruction results in edx containing zero. Hence the 3rd
instruction always evaluates to true and the branch is
taken to L6. The abstract stack graph shown here can
be used to detect this redundant control. At program
point 6, where the call to “fun” is made, the abstract
stack state includes the address of the instructions L6
and L7 that push the arguments for “fun”, hence
detecting the redundant control.

5.2. Detecting obfuscations to ret

A ret statement typically pops the top of the stack
and returns control to the instruction immediately
following the call to the function from where it is
returning. The ret itself can be used to abuse a call or

E: push E ;entry
L0: call fun
L1: …
…
L15: ;fun here
…
L20: ret

Normal call/ret

E: push E ;entry 1
L0: call fun 2
L1: …
…
L15: ;fun here
…
L20: pop eip 3

Using pop to return

E: push E ;entry 1
L0: call fun 2
; n junk bytes
L5: …
…
L15: ;fun here
L15: add [esp], n 3
; modifies [esp]
L20: ret 4

Return elsewhere

E: push E ;entry 1
L0: call fun 2
L1: …
…
L15: ;fun here
L15: pop eax 3
; loose return address
; calc new ret address
L19: push Addr 4
L20: ret 5

Abusing call

5(a) 5(b) 5(c) 5(d)

Figure 5. Possible ways of obfuscating the ret

eip = L1

esp
Actual Stack

E

eip = L1

esp

Actual Stack

E

eip = L5

esp

Actual Stack

E

eip = Addr

esp

Actual Stack

E

E

L0

1

2 3

Abstract Stack Graph

1 E

L0 2 3

Abstract Stack Graph

4

Abstract Stack Graph

3E

L0

2

1
5

4

L19

to return elsewhere. Figure 5 shows few of the possible
ways of obfuscating ret. As shown in figure 5(b) a pop
can be used instead of a ret to obfuscate the ret. Using
the abstract stack graph, if after a call has been
detected with no previous pushes, then a ret has been
detected. At program point 3 in the abstract stack
graph there are no previous pushes as the stack state
shows only L0. Hence an obfuscated ret has been
detected here.

Instead of the conventional way of returning to the
instruction immediately following a call, the return
address is modified in the called function and control
transferred to some other instruction. This is
obfuscating ret to return elsewhere. In figure 5(c), the
2nd instruction makes the call to “fun”. Immediately
after the call instruction, n junk bytes are inserted to
locate a specific return address (L5 in this case).
Within “fun”, the contents of the stack pointer are
modified by adding n bytes to the return address (the
3rd instruction) and thus generating a new return
address. To use the abstract stack graph to detect this
obfuscation requires augmenting the abstract stack to
maintain an additional tag called modified. When a
value is pushed on the stack, modified is set to false.
Now we also augment the algorithm to deal with other
instructions. If an instruction may change the content
of the stack, and we can determine the stack offset that
is being changed, then we can change the tag of that
location to modified. If the value was pushed by a call
and that value is at the top of the stack when you get to
ret, it implies that ret is returning elsewhere.

The call instruction can also be abused to actually
jump to a particular instruction. In figure 5(d), a call is
made to “fun” at instruction 2. Within the function, the
return address from “fun” is popped out from the top
of the stack. A new return address is computed and
pushed onto the stack (instruction 4). The 5th
instruction transfers control to the new address
location now. The abstract stack graph shown here can
be used to detect this abuse of the call instruction. At
program point 5, the top of the abstract stack has only
E. Tracing back on the abstract stack graph, at program
point 4, we find the address of the instruction that
pushed the new “Addr”. If this Addr were a constant,
then we can determine it, but if were to be computed at
runtime, then there is no way of knowing it.

6. Conclusions

We have presented a method to detect obfuscations
of call and ret instruction. The method performs
abstract interpretation of stack related instructions. The
interpretation yields an abstract stack graph that

represents all possible shapes of the stack at any
program point. We have presented various
obfuscations of stack related instructions and how they
may be deobfuscated using the abstract stack graph.
The construction of an abstract stack graph offers a
step towards analyzing obfuscated binaries for
malicious behavior.

7. References

[1] "TESO, burneye elf encryption program,"

http://teso.scene.at, Last accessed April 10,
2004.

[2] "z0mbie," http://z0mbie.host.sk, Last accessed
April 10, 2004.

[3] B. Barak, O. Goldreich, R. Impagliazzo, S.
Rudich, A. Sahai, S. Vadhan, and K. Yang,
"On the (Im)possibility of Obfuscating
Programs," presented at Advances in
Cryptology (CRYPTO'01), 2001.

[4] M. Christodrescu and S. Jha, "Static Analysis
of Executables to Detect Malicious Patterns,"
presented at The 12th USENIX Security
Symposium (Security '03), Washington DC,
USA, 2003.

[5] C. Cifuentes and K. J. Gough,
"Decompilation of Binary Programs,"
Software Practice and Experience, vol. 25,
pp. 811 - 829, 1995.

[6] C. Collberg and C. Thomborson,
"Watermarking, Tamper-proofing, and
Obfuscation - Tools for Software Protection,"
The Department of Computer Science,
University of Arizona Technical Report
TR00-03, February 2000 2000.

[7] C. Collberg, C. Thomborson, and D. Low, "A
Taxonomy of Obfuscating Transformations,"
Department of Computer Science, The
University of Aukland Technical Report 148,
July 1997 1997.

[8] C. Collberg, C. Thomborson, and D. Low,
"Breaking Abstraction and Unstructuring
Data Structures," presented at Proceedings of
1998 IEEE International Conference on
Computer Languages, 1998.

[9] C. Collberg, C. Thomborson, and D. Low,
"Manufacturing Cheap, Resilient, and
Stealthy Opaque Constructs," presented at
ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages
(POPL'98), San Diego, CA, 1998.

[10] M. Jordon, "Dealing with Metamorphism," in
Virus Bulletin, 2002, pp. 4 - 6.

[11] A. Lakhotia and P. K. Singh, "Challenges in
Getting Formal with Viruses," in Virus
Bulletin, 2003, pp. 14 -18.

[12] C. Linn and S. Debray, "Obfuscation of
Executable Code to Improve Resistance to
Static Disassembly," presented at Proceedings
of the 10th ACM Conference on Computer
and Communication Security 2003,,
Washington D.C., 2003.

[13] M. Mohammed, "Zeroing in on Metamorphic
Viruses," in The Center for Advanced
Computer Studies. Lafayette, LA: University
of Louisiana at Lafayette, 2003.

[14] Symantec, "Understanding heuristics:
Symantec's Bloodhound technology,"
Symantec White Paper Series, vol. XXXIV,
1997.

[15] P. Szor, "Coping with Cabanas," in Virus
Bulletin, 1997, pp. 10 - 12.

[16] P. Szor, "HPS (Hantavirus Pulmonary
Syndrome)," in Virus Bulletin, 1998, pp. 13 -
15.

[17] P. Szor and P. Ferrie, "Hunting for
Metamorphic," presented at Virus Bulletin
Conference, 2001.

[18] G. Wroblewski, "General Method of Program
Code Obfuscation," Wroclaw University of
Technology, Institute of Engineering
Cybernetics, 2002.

